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Abstract. Several self-stabilizing time division multiple access (TDMA)
algorithms are proposed for sensor networks. Such algorithms enable
the transformation of programs written in abstract models considered
in distributed computing literature into a model consistent with sensor
networks, i.e., write all with collision (WAC) model. Existing TDMA
slot assignment algorithms have one or more of the following properties:
(i) compute slots using a randomized algorithm, (ii) assume that the
topology is known upfront, and/or (iii) assign slots sequentially. If these
algorithms are used to transform abstract programs into programs in
WAC model then the transformed programs are probabilistically correct,
do not allow the addition of new sensors, and/or converge in a sequential
fashion. In this paper, we propose a self-stabilizing deterministic TDMA
algorithm where a sensor is aware of only its neighbors. We show that
the slots are assigned to the sensors in a concurrent fashion and starting
from arbitrary initial states, the algorithm converges to states where
collision-free communication among the sensors is restored. Moreover,
this algorithm facilitates the transformation of abstract programs into
programs in WAC model that are deterministically correct.

1 Introduction

One of the important concerns in programming distributed computing platforms
is the model of computation used to specify programs. Programs written for
platforms such as sensor networks and embedded systems often have to deal
with several low level challenges of the platform (e.g., communication, message
collision, race conditions among different processes, etc). Therefore, to simplify
programming, it is important to abstract such low level issues. In other words,
the ability to specify programs in an abstract model and later transform them
into a concrete model that is appropriate to the platform is crucial.

Transformation of programs has been studied extensively (e.g., [1–6]). These
transformations cannot be applied for sensor networks as the model of computa-
tion in sensor networks is write all with collision (WAC) model. In WAC model,
whenever a sensor executes an action, it writes the state of all its neighbors in
one atomic step. However, if two neighbors j and k of a sensor (say i) try to
execute their write actions at the same time then, due to collision, state of i will
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remain unchanged. The actions of j and k may update the state of their other
neighbors successfully.

Recently, several approaches have been proposed to transform programs writ-
ten in abstract models considered in distributed computing literature into pro-
grams in WAC model [7–10]. In [7], the author proposes a transformation to
correctly simulate an abstract program in sensor networks. This algorithm uses
carrier sensor multiple access (CSMA) to broadcast the state of a sensor and,
hence, the transformed program is randomized. And, the algorithm in [9] uses
time division multiple access (TDMA) that ensures collision-free write actions.
In this approach, in WAC model, each sensor executes the enabled actions in the
TDMA slots assigned to that sensor. And, the sensor writes the state of all its
neighbors in its TDMA slots. If the TDMA algorithm in [11], a self-stabilizing
and deterministic algorithm designed for grid-based topologies, is used with [9]
then the transformed program in WAC model is self-stabilizing and determinis-
tically correct for grid-based topologies. And, if randomized TDMA algorithms
proposed in [8,12] are used with [9] then the transformed program is probabilis-
tically correct. Finally, the algorithm in [10], a self-stabilizing and deterministic
TDMA algorithm for arbitrary topologies, allows one to obtain programs in
WAC model that are deterministically correct for arbitrary topologies.

In this paper, we are interested in stabilization preserving deterministic trans-
formation for WAC model. As mentioned above, a self-stabilizing deterministic
TDMA algorithm enables such a transformation. One of the drawbacks of ex-
isting self-stabilizing deterministic TDMA algorithms (e.g., [10]) is that the re-
covery is sequential. Specifically, in [10], whenever the network is perturbed to
arbitrary states (e.g., slots are not collision-free), a distinguished sensor (e.g.,
base station) initiates recovery and each sensor recomputes its slots one by one.
However, it is desirable that the network self-stabilizes in a distributed and con-
current manner (without the assistance of distinguished sensors).

To redress this deficiency, in this paper, we propose a self-stabilizing de-
terministic TDMA algorithm that provides concurrent recovery. In this algo-
rithm, whenever a sensor observes that the slots assigned to its neighbors are
not collision-free, it initiates a recovery. As a result, its neighbors recover to
legitimate states (i.e., the slots are collision-free) and the network as a whole
self-stabilizes concurrently. We show that the algorithm supports addition or re-
moval of sensors in the network. While a removal of a sensor does not affect the
normal operation of the network, our algorithm ensures that the slots assigned
to removed sensors are reused. And, our algorithm supports controlled addition
of new sensors in the network.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we introduce the models of computation considered in distributed
computing platforms and formally state the problem definition of TDMA. In
Section 3, we present our distributed self-stabilizing TDMA slot assignment al-
gorithm. And, in Section 4, we discuss extensions to our algorithm. Subsequently,
in Section 5, we compare our algorithm with related work. Finally, in Section 6,
we provide concluding remarks.
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2 Preliminaries

In this section, we define the write all with collision model, formally state the
problem, and list the assumptions made in this paper.

2.1 Write-All-With-Collision (WAC) Model and Collision Detectors

A computation model limits the variables that a program can read and write.
Program actions are split into a set of processes (i.e., sensors). Each action is
associated with one of the processes in the program.

In WAC model, each sensor consists of write actions (to be precise, write-all
actions). In one atomic step, a sensor can update its own state and the state of
all its neighbors. However, if two or more sensors simultaneously try to update
the state of a sensor, say, k, then the state of k remains unchanged. Thus, WAC
model captures the fact that a message sent by a sensor is broadcast. But, if
multiple messages are sent to a sensor simultaneously then, due to collision, it
receives none.

It is clear that WAC model does not provide any indication of collision. How-
ever, the physical layer of the communication stack may be required to expose
state of the communication medium (e.g., collision information) to the higher
layers of the stack. To enable such notifications, collision detectors are proposed
in [13]. Collision detectors provide receiver-based notifications when message loss
is detected. In [13], the authors identify 6 classes of collision detectors based on
completeness and accuracy. In the context of this paper, we integrate eventually
accurate collision detector to our model. In an eventually accurate collision de-
tector, there exists a frame, say fr, such that if k detects a collision in fr′ ≥ fr

then k does not receive some messages that were broadcast in fr′ .

2.2 Problem Statement

Distributed TDMA slot assignment. TDMA is the problem of assigning
communication time slots to each sensor. Two sensors j and k cannot transmit in
the same slot if their communication interferes with each other. In other words,
j and k cannot transmit in the same slot if the communication distance between
them is less than or equal to 2. To model this requirement, we consider the
sensor network as a graph G = (V, E) where V is the set of all sensors and E

is the communication topology of the network. More precisely, if sensors u ∈ V

and v ∈ V can communicate with each other then the edge (u, v) ∈ E. Finally,
distanceG(u, v) identifies the communication distance between u and v in G. The
communication distance is the number of links in the shortest path between the
two sensors. Thus, the problem statement of TDMA is shown in Figure 1.

Definition 1. (TDMA frame) In TDMA, time is partitioned into fixed sized
frames. Each TDMA frame is divided into fixed sized slots. In this paper, we
ensure uniform bandwidth allocation among sensors. Therefore, each sensor is
assigned one slot in every TDMA frame. A sensor is allowed to transmit in the
slots assigned to it.
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Problem Statement: Distributed TDMA Slot Assignment

Consider the communication graph G=(V,E); Given a sensor j ∈ V , assign

time slots to j such that the following condition is satisfied:

k ∈ V ∧ k 6= j ∧ distanceG(j, k) ≤ 2 =⇒ slot.j ∩ slot.k=∅
where slot.i identifies the slots assigned to sensor i.

Fig. 1. Problem statement of distributed TDMA slot assignment

Definition 2. (TDMA period) The length of the TDMA frame is called the
TDMA period. More specifically, it is the interval between the slots assigned to
a sensor in consecutive frames.

Distance 2 coloring. The problem statement of TDMA is similar to the prob-
lem of distance 2 coloring. Distance 2 coloring algorithm assigns colors to all the
sensors in the network such that the colors assigned to distance 2 neighborhood
of a sensor are unique. The color assigned to a sensor identifies the initial TDMA
slot of that sensor. The sensor can compute its subsequent TDMA slots using
TDMA period. Ideally, TDMA period P = (d2 + 1), where d is the maximum
degree of the network. (We refer the reader to [10] for a proof that the number
of colors required to obtain distance 2 coloring is at most d2 + 1.) Thus, Figure
2 states the problem definition of distance 2 coloring.

Problem Statement: Distance 2 Coloring

Consider the communication graph G=(V,E); Given a sensor j ∈ V , assign

a color to j such that the following condition is satisfied:

k ∈ V ∧ k 6= j ∧ distanceG(j, k) ≤ 2 =⇒ color.j 6= color.k

where color.i identifies the color assigned to sensor i.

Fig. 2. Problem statement of distance 2 coloring

Self-stabilization. An algorithm is self-stabilizing iff starting from an arbi-
trary state, it: (a) recovers to legitimate state and (b) upon recovery continues
to be in legitimate states forever [14, 15]. Extending this definition, we have
the problem statement of a self-stabilizing TDMA slot assignment algorithm as
shown in Figure 3.

2.3 Assumptions

In this paper, we do not assume the presence of a base station. In our algo-
rithm, the sensors collaborate among themselves to obtain distance 2 coloring
and TDMA slot assignments. We assume that each sensor knows the IDs of the
sensors that it can communicate with. This assumption is reasonable since the
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Problem Statement: Self-Stabilizing TDMA Slot Assignment

Consider the communication graph G=(V, E); A TDMA slot assignment algorithm

is self-stabilizing iff starting from arbitrary initial states, the algorithm recovers to the

following state:

j ∈ V ∧ k ∈ V ∧ k 6= j ∧ distanceG(j, k) ≤ 2 =⇒ slot.j ∩ slot.k=∅
and continues to remain in this state forever.

Fig. 3. Problem statement of self-stabilizing TDMA slot assignment

sensors collaborate among their neighbors when an event occurs. To simplify
the presentation of the algorithm, we assume that frame numbers are not cor-
ruptible. However, we note that relaxing this assumption does not affect the
correctness of the algorithm. Moreover, we can extend the algorithm to make
frame numbers bounded. We assume that the maximum degree of the graph does
not exceed a certain threshold, say d. This can be ensured by having the deploy-
ment follow a certain geometric distribution or using a predetermined topology.
Finally, we assume that the clocks of the sensors are synchronized. We can adopt
the approach discussed in [10] to synchronize the clocks of the sensors.

3 TDMA Slot Assignment Algorithm

In this section, we present our distributed and deterministic TDMA algorithm. In
Section 3.1, we give an outline of the algorithm. Then, in Section 3.2, we present
the algorithm in detail. We discuss how the network self-stabilizes starting from
arbitrary states to states where the slots are assigned as identified in Figure 3.
Subsequently, in Section 3.3, we illustrate our algorithm with an example.

3.1 Outline of the Algorithm

Initially, the colors assigned to the sensors may be arbitrary. As a result, the
communication among the sensors may not be collision-free. To achieve collision-
free communication among the sensors, we adopt distributed reset (e.g., [16,17])
approach. More specifically, whenever collisions are detected for a particular slot
(i.e., color) for a threshold number of consecutive TDMA frames (say, at j), the
algorithm resets the colors of appropriate sensor(s) in the neighborhood of j. In
other words, a reset computation is used to update the colors assigned to the
sensors such that the sensors in distance 2 neighborhood of j have unique colors
and, thus, ensure that slots assigned to them are collision-free at j.

Towards this end, j schedules a reset computation in its current TDMA
slots. It schedules the reset such that the following requirements are satisfied:
(i) reset computations of others sensors in the distance 2 neighborhood of j do
not interfere with each other and (ii) when j initiates reset, the sensors in the
distance 3 neighborhood of j have stopped transmitting. The first requirement
ensures that only one reset computation is active in a given neighborhood at any
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instant. Otherwise, simultaneous resets in a distance 2 neighborhood may result
in collisions and/or sensors choosing conflicting colors. The second requirement
ensures that the reset messages and update messages are communicated in a
collision-free manner.

Whenever a sensor, say k, receives the reset message from j, first, it updates
the color information it maintains about its distance 1 and distance 2 neighbors.
Next, it checks if it has to change the color in response to the reset. If k needs
to update its color, it chooses a non-conflicting color among the sensors in its
distance 2 neighborhood. And, subsequently, k broadcasts change color message

in its newly computed slots.
Now, whenever a sensor, say l, receives the change color message from k, first,

it cancels any scheduled reset computations. Subsequently, l updates the color
information it maintains about its distance 1 and distance 2 neighbors. When
j receives change color message, it sends restart message to signal its distance 3
neighborhood to restart application communication. Thus, the algorithm resets
the neighborhood of j to deal with a collision at j. However, note that one reset
computation may not be sufficient to restore the state of the entire network.

3.2 Reset Computation and Slot/Color Assignment

In this section, we discuss the algorithm in detail. This is a 5-step algorithm:
(1) observe collision and schedule reset computation, (2) send reset message, (3)
update color, (4) notify color, and (5) restart communication. These steps may
be repeated until the network self-stabilizes to legitimate states. (For reasons of
space, we do not include a pseudo code for the proposed algorithm.)
Step 1: Observe collision and schedule reset computation. If a sensor,
say j, observes collision at slot cx (i.e., color cx) for a threshold number of
consecutive frames then it schedules a reset computation. Towards this end,
first, j appends cx to collisions.j, the list of collision slots it has observed so
far. Also, it adds (fc.j, cx) to timestamp.j, where fc.j is the frame in which j

observed the collision at slot cx. If j observed a collision for the first time then
j determines the slot in which it can send a reset message. Sensor j schedules a
reset computation such that requirements identified in Section 3.1 are met.
Requirement 1: Ensure only one active reset in the neighborhood. To satisfy
this requirement, j schedules the reset computation in TDMA frame freset.j =
fc.j+ID.j+D3timeout, where ID.j is the ID of sensor j and D3timeout is defined
below. This ensures that if two sensors observe a collision simultaneously, then
their resets are scheduled in unique frames. On the other hand, if the sensors
observe a collision in different frames, it is possible that their resets are scheduled
in the same frame. However, before a sensor initiates a reset, requirement 2
ensures that the distance 3 neighborhood has stopped. As a result, the sensor
that observed a collision earlier will be able to proceed.
Requirement 2: Ensure distance 3 neighborhood has stopped. Suppose j has
scheduled reset in freset.j. Before j initiates reset, it has to wait until its dis-
tance 3 neighborhood stops transmitting messages. Towards this end, j stops
transmitting for at least D3timeout frames before it fires the reset. D3timeout is
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the number of TDMA frames required for distance 3 neighborhood of j to stop
transmitting messages. Specifically, when j stops, its neighbors will notice that
j has stopped. As a result, distance 1 neighbors of j stop. Likewise, distance
2 and distance 3 neighbors of j stop. To prevent false positives, neighbor, say
l ∈ N.j, stops only after it detects that j has stopped for a threshold number
of consecutive frames, stoptimeout. Therefore, in order to ensure that distance 3
neighborhood of a sensor has stopped, D3timeout ≥ 3 × stoptimeout.

Step 2: Send reset message. Each sensor, say j, maintains the state of
its distance 2 neighborhood: nbrClr.j (contains the state of distance 1 neigh-
bors of j) and dist2Clr.j (contains the state of distance 2 neighbors of j). Each
entry in nbrClr.j contains color assignment and the last frame in which j or
its neighbors received a message from the corresponding sensor. Likewise, each
entry in dist2Clr.j contains color assignment and the last frame in which one of
the neighbors of j received a message from the corresponding sensor. Initially,
nbrClr.j and dist2Clr.j contain arbitrary color assignments that may not reflect
the accurate state of its distance 2 neighborhood.

Notation. An entry in nbrClr.j is denoted as (k, ck, fk); this indicates that j

last received a message from k in frame fk and in slot (i.e., color) ck. Entries in
dist2Clr.j are denoted similarly. Additionally, we use “-” to wildcard or ignore
a field in an entry. For example, (−, cx,−) indicates that we are interested in
entries that have the color cx. Additionally, we denote the current frame at j as
fcurrent.j.

Sensor j initiates a reset in freset.j only if it has not stopped transmitting in
response to another reset. From Step 1, we note that j sends the reset message to
its distance 1 neighbors in a collision-free manner. The reset message format is
shown in Figure 4. This includes the state of distance 1 neighbors that j knows
currently, list of collisions and their timestamps, the sensor that should update
its color in response to this reset, and the initiator of the reset (i.e., j). Sensor
j selects the sensor that should update its color based on IDs of the neighbors
that j did not hear for a threshold number of consecutive frames.

rmj .neighborState

neighbor color lastReceived

j color.j fcurrent .j

nbrClr.j

rmj .collisionInfo collisions.j

rmj .resetTimestamp timestamp.j

rmj.sensorToChange
l, where l ∈ N.j is the sensor with lowest ID for which j

did not hear any thing for a threshold number of frames

rmj .initiator j

Fig. 4. Reset message of j, rmj
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Theorem 1. Reset computation initiated by any sensor executes in a collision-
free manner.

Proof. Suppose two reset computations execute simultaneously in a distance 2
neighborhood. Let k and l be two unique sensors that have initiated the reset
such that distanceG(k, l) ≤ 2. Both k and l should have observed a collision
in the same frame and scheduled resets to start at the same frame. Otherwise,
either one of them would have observed that the neighbors have stopped in
response to a reset of the other and, hence, it would have stopped as well.
Therefore, we have, freset.k=freset.l. In other words, fc.k+ID.k+D3timeout =
fc.l + ID.l + D3timeout. Without loss of generality, assume that ID.k < ID.l.
Now, we have fc.k > fc.l. More specifically, l observed the collision before k did.
This is a contradiction. ⊓⊔

Step 3: Update color. Whenever a sensor, say k, receives the reset message

rmj , first, it cancels any scheduled reset. Next, it updates its neighbor state
using the information in rmj as shown in Figure 5. (Note that k updates an
entry in nbrClr.k or dist2Clr.k only if the initiator j had received a message
from the corresponding sensor most recently than that of k.)

if (j = rmj .initiator ∧ (j, cj ,−) ∈ rmj .neighborState)
nbrClr.k = {nbrClr.k − (j,−,−)} ∪ (j, cj , fcurrent .k)

if (p ∈ N.k ∧ (p, cp, f1) ∈ rmj .neighborState ∧ (p,−, f2) ∈ nbrClr.k ∧ f2 < f1)
nbrClr.k = {nbrClr.k − (p,−,−)} ∪ (p, cp, f1)

else if (p 6∈ N.k ∧ (p, cp, f1) ∈ rmj .neighborState ∧ (p,−, f2) ∈ dist2Clr.k ∧ f2 < f1)
dist2Clr.k = {dist2Clr.k − (p,−,−)} ∪ (p, cp, f1)

// addition/removal of sensors are updated in nbrClr.k and dist2Clr.k as
discussed in Section 4

Fig. 5. Updating nbrClr.k and dist2Clr.k of sensor k

Sensor k then checks if it has to update its color. If k = rmj .sensorToChange
then j requires k to update its color. Sensor k updates its color as shown in Figure
6. Specifically, if color.k is in rmj .collisionInfo, k chooses a color c from K (i.e.,
the set of all available colors) such that there is no collision in slot c at j and is
unique among its distance 2 neighborhood.
Step 4: Notify color. If k = rmj .sensorToChange, it sends change color
message cmk to all its neighbors as shown in Figure 7 (regardless of whether it
changed its color or not). Specifically, k sends its color information, nbrClr.k,
and the initiator of the reset. Whenever a sensor receives change color message,
first, it cancels any scheduled resets. Next, it updates its nbrClr and dist2Clr
similar to the discussion shown in Figure 5. Specifically, if l receives cmk, it
updates nbrClr.l with (k, ck, fcurrent.l), where (k, ck,−) ∈ cmk.neighborState.
Similarly, l updates nbrClr.l and dist2Clr.l based on cmk.
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if (k = rmj .sensorToChange ∧ color.k ∈ rmj .collisionInfo) {
potentialColors = {c|c ∈ K ∧ c 6∈ rmj .collisionInfo ∧ (−, c,−) 6∈ nbrClr.k

∧(−, c,−) 6∈ dist2Clr.k}
color.k = min(potentialColors)

}

Fig. 6. Updating color assignment of sensor k

cmk.neighborState

neighbor color lastReceived

k color.k fcurrent.k

nbrClr.k

cmk.initiator j

Fig. 7. Change color message of k, cmk

Theorem 2. If a sensor updates its color in response to a reset then the change
color message of that sensor is communicated in a collision-free manner.

Proof. Let j be the initiator of the reset. And, l ∈ N.j updates its color in
response to the reset of j. When j initiates the reset (rmj), distance 3 neighbors
of j have stopped transmitting. Therefore, when l sends change color message

cml, neighbors of l will receive it successfully. Hence, all neighbors of l will get
the latest color assigned to l. ⊓⊔

Step 5: Restart communication. Whenever j initiates a reset, it expects to
receive a change color message from rmj .sensorToChange before its next allotted
slot in fcurrent.j + 1 frame. If j receives the change color message from the
sensor that changed the color in response to reset of j, j cleans collisions.j and
timestamp.j. Then, it signals its neighbors to restart application communication.
Specifically, it sends restart message, smj ; the format of smj is the same as
change color message (cf. Figure 7). Once a sensor receives smj, it updates nbrClr
and dist2Clr and starts application communication in its slots. Continuing in
this fashion, the distance 3 neighborhood of j restarts. Note that the restart
operation updates the color assignment of l = rmj .sensorToChange at distance
2 neighborhood of l, potentially causing collisions at some distance 2 neighbors of
l. When a sensor hears a restart message or collision, it restarts communication.

On the other hand, if l = rmj .sensorToChange did not send change color

message (possibly, due to failure of l) then j marks l as potentially failed. And,
it cleans collisions.j and timestamp.j. Also, it sends a restart message. In future
resets at j, j will not set l in rmj .sensorToChange. If l has not failed, j will
remove l from the list of potentially failed sensors when j hears from l.

Theorem 3. If a sensor updates its color in response to a reset, eventually, the
distance 2 neighborhood of that sensor learns the state of the sensor.
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Proof. Suppose k ∈ N.j updates its color in response to a reset initiated by
j. Distance 3 neighborhood of j have stopped transmitting in response to the
reset of j. Therefore, we can conclude that sensors in distance 2 neighborhood
of k have stopped transmitting. Now, when k sends change color message cmk,
distance 1 neighbors of k receive it successfully. When j sends restart message,
distance 2 neighbors of k are updated. Note that it is possible that when distance
1 neighbors of k forward this restart, collisions may prevent some distance 2
neighbors of k to not receive the update. Future resets will restore the state of
the neighborhood of k (cf. Figure 8 for illustration). Hence, eventually, state of
k will be updated at all sensors in its distance 2 neighborhood. ⊓⊔

Fig. 8. Illustration of Theorem 3. (a) sensor k sends change color message cmk to all
its distance 1 neighbors. (b) sensor k forwards restart message smk to all its distance
1 neighbors. However, p, q ∈ N.k may have the same color. As a result, when p and
q forward smp and smq, some distance 2 neighbors of k may not be updated. This
collision is detected by k and it will schedule a future reset. (c) sensor p forwards smp

to its neighbors. However, sensor t such that distanceG(p, t) = 2 ∧ distanceG(j, t) > 3
may be assigned the same color as p. Future resets at s that detected this collision will
restore the neighborhood. Note that (b) is a special case of (c).

We note that in this algorithm at most one neighbor is recovered in any
reset. Therefore, if j observes collisions at two or more colors/slots then j may
observe collisions after this reset. Subsequent resets at j or at other sensors will
eventually restore collision-free communication at j. Thus, we have

Theorem 4. Eventually, the network self-stabilizes to the states where collision-
free communication among the sensors is restored. ⊓⊔

3.3 Illustration

Consider the topology shown in Figure 9(a). The color assignments of each sensor
is specified along with its ID. For example, 2(1) denotes that sensor 2 is assigned
color 1. Initially, we assume that fcurrent = 0 at all sensors. From Figure 9(a),
we can note that every sensor observes a collision (shown with filled circles),

Each sensor, say j, determines the frame for reset: freset.j = fcurrent+ID.j+
ft, where ft = D3timeout (cf. Figure 9(b)). Sensor 0 sets rm0.sensorToChange =
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Fig. 9. Illustration of the TDMA slot assignment algorithm

1. As a result, sensor 1 changes its color to 2. Then, it sends a change color mes-

sage, cm1 (cf. Figure 9(d)). Once sensor 0 receives cm1, it updates its state and
sends restart message, sm0 (cf. Figure 9(e)). Once sensors 1 and 2 receive sm0,
they restart their communication. Continuing in this fashion, distance 3 neigh-
borhood of sensor 0 restart communication. As we can observe from Figure 9(f),
message communication is still not collision free. Sensors then schedule subse-
quent resets and, finally, as shown in Figure 9(g), collision-free communication is
restored. In this example, the network converges in 4ft + 18 frames. (Note that
in this illustration all sensors are within distance 3 of each other.)

4 Extensions

In this section, we show how to extend the algorithm to deal with addition/removal
of sensors. And, we present an approach to improve the bandwidth allocation of
the sensors.

4.1 Dealing with Failure of Neighbors

In our algorithm, whenever a sensor (say j) hears a collision, it schedules a reset
computation to restore collision-free communication. On the other hand, if j

does not hear a message or observe a collision in a given slot, it could be because
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of the one of the following factors: (i) suppose k ∈ N.j is the neighbor that is
assigned the corresponding color; k may have failed, (ii) k may have stopped in
response to a reset, or (iii) k does not have any data to send. If a sensor fails,
the TDMA slots assigned to other sensors are still collision-free and, hence,
normal operation of the network is not affected. However, the slots assigned to
the failed sensors are wasted. In this section, we discuss an approach to reclaim
slots assigned to failed sensors.

Towards this end, first, we introduce control message. Each sensor transmits
a control message once in every Tcontrol frames. This message includes the color
assignment of the sensor and its nbrClr. And, Tcontrol is determined when the
network is deployed and is chosen based on how frequently the network changes.
If topology changes are common, a smaller Tcontrol lets the sensors to quickly
learn the state of their neighbors. On the other hand, a larger Tcontrol is more
appropriate for a network that changes only occasionally.

To reclaim the slots, we proceed as follows. Sensor j concludes that k ∈ N.j

has failed if fcurrent.j − lastReceivedk > Tcontrol, where (k,−, lastReceivedk) ∈
nbrClr.j. In other words, if j sees that it did not receive any message from k for
more than Tcontrol frames, it concludes that k has failed.

When j concludes k has failed, it sets (k,−, failed) in nbrClr.j. And, sends
control message, controlj . Whenever a sensor observes that (k,−, failed) is present
in controlj .neighborState, it marks k as failed. The active neighbors of j remove
(k,−,−) from nbrClr or dist2Clr. This allows the sensors to reuse the color as-
signed to k to other sensors (in case of dynamic addition of new sensors or during
reset computations). However, if k has not failed, it announces its presences in
its current TDMA slots by sending controlk. When neighbors of k receive this
message they update their nbrClr values. Subsequently, distance 2 neighbors of
k also restore the state of k.

4.2 Dealing with Addition of Sensors

In this section, we discuss an approach to dynamically add new sensors in the
network. This approach is similar to [10]. Suppose a sensor (say p) is added to the
network such that the maximum degree of the network is not changed. Before p

starts transmitting application messages, it listens to the message communica-
tion of its neighbors. To let p learn the colors used in its distance 2 neighborhood,
we extend our algorithm as follows.

Sensor p waits for Tcontrol frames before it participates in the network. This
allows p to learn distance 1 and distance 2 neighbors and their color assignments
(from control messages of its neighbors). After Tcontrol, p chooses a color. Next,
p announces its presence to its neighbors by sending a control message in its
newly computed slot. When a sensor receives a control message from p, it adds
p to its neighbor list and updates nbrClr. Subsequently, distance 2 neighbors of
p also learn its presence and update their dist2Clr values.

Thus, this approach allows the addition of new sensors in a neighborhood
such that it does not violate the maximum degree assumption. However, if two
or more sensors are added simultaneously, it is possible that they may choose
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the same color. Since our algorithm is self-stabilizing, the network will eventually
self-stabilize to states where the color assignments are collision-free.

4.3 Improving the Bandwidth Allocation

In this section, we discuss an approach that allows the sensors to reduce the
TDMA period and, hence, get better bandwidth allocation. The intuition behind
this extension is that if cx is the maximum color used in the network, the ideal
TDMA period should be cx + 1.

Each sensor (say j) maintains maxColor.j that denotes the maximum color
used in its distance 2 neighborhood. It also maintains controlMax.j that denotes
the maximum color used in the network. Note that j may not yet have the
accurate information about the maximum color used in the network.

To improve the bandwidth allocation of the sensors, we extend the control

message (discussed in Section 4.1) as follows. Any sensor in the network may
decide to improve bandwidth allocation in the network. Let j decides to im-
prove bandwidth allocation. It sends a control message, controlj that includes
controlj .maxColorInfo=max(controlMax.j,maxColor.j). Sensor j also indicates
when the sensors can switch to new TDMA period, i.e., controlj .switchOn =
fswitchOn.j, where fswitchOn.j ≥ fcurrent.j + 2 × Tcontrol. (We discuss why
this is necessary below.)

Whenever k receives controlj with maxColorInfo, k sets controlMax.k and
the frame in which it can switch to the new TDMA period as shown in Figure
10. Sensor k includes this information in its control messages. Thus, continuing
in this fashion, each sensor will eventually learn the maximum color used in the
network, i.e., controlMax. And, each sensor also knows the ideal TDMA period
(i.e., controlMax + 1).

controlMax.k = max(controlMax.k, controlj .maxColorInfo)
fswitchOn.k = max(fswitchOn.k, controlj .switchOn)

Fig. 10. Receiving control message with maxColorInfo

Once the sensors have learned the maximum color used in the network,
they can update their TDMA period. However, this operation should occur syn-
chronously. In other words, all the sensors should update their TDMA period
at the same time. Otherwise, collisions may occur. To address this issue, first,
we note the following. If the TDMA slots assigned to the sensors are consistent
then all the sensors learn the maximum color used in the network in at most
2 × Tcontrol frames, where Tcontrol is the period between two successive con-

trol messages (cf. Section 4.1). Since the initiator of this operation includes the
frame in which new TDMA period is effective, each sensor knows exactly when
to switch. Thus, the TDMA period can be updated to reflect the ideal value.
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5 Related Work

Related work that deals with self-stabilizing deterministic slot assignment al-
gorithms include [10, 11, 18]. In [11], Kulkarni and Arumugam proposed self-
stabilizing TDMA (SS-TDMA). In this algorithm, the topology of the network
is known upfront and remains static. Also, a base station is responsible for pe-
riodic diffusing computations to revalidate the slots. In [10], Arumugam and
Kulkarni proposed self-stabilizing deterministic TDMA algorithm. Again, this
algorithm assumes the presence of a base station that is responsible for token
circulation. And, the slots are assigned in a sequential fashion.

In [18], Danturi et al proposed a self-stabilizing solution to dining philoso-
phers problem where a process cannot share the critical section (CS) with non-
neighboring processes also. This problem has application in distance-k coloring,
where k is the distance up to which a process cannot share CS. This algorithm
requires each process p to maintain a tree rooted at itself that spans the processes
with whom p cannot share CS.

Related work that deals with randomized algorithms for TDMA slot assign-
ment include [8, 12]. In [8], Herman and Tixeuil proposed a probabilistic fast
clustering technique for TDMA slot assignment. In this algorithm, first, a max-
imal independent set that identifies the leaders is computed. These leaders are
then responsible for distance 2 coloring. In [12], Busch et al proposed a random-
ized algorithm for slot assignment. The algorithm operates in two phases: (1)
to compute the slots and (2) to determine the ideal TDMA period. Both these
phases are self-stabilizing and can be interleaved.

6 Conclusion

In this paper, we presented a self-stabilizing deterministic TDMA slot assign-
ment algorithm for write all with collision (WAC) model. We showed that the
algorithm allows sensors to recover concurrently and self-stabilize starting from
arbitrary states. While the convergence time of the proposed algorithm is ex-
pected to be reasonable (since concurrent recoveries initiated by sensors that
are sufficiently far apart are allowed), it can be improved further by integrating
neighborhood unique naming scheme from [8] that assigns unique IDs for sensors
within any distance 3 neighborhood.

Additionally, as discussed in [9], our algorithm is applicable in transform-
ing existing programs in abstract models considered in distributed computing
literature into programs in WAC model that are deterministically correct. This
allows one to reuse existing solutions in distributed computing for problems such
as routing, data dissemination, synchronization, and leader election in the con-
text of sensor networks. Thus, the algorithm proposed in this paper allows one
to transform such solutions and evaluate them in sensor networks. (We refer the
reader to [19] for examples of such transformations, prototype implementations
of the transformed programs, and their evaluations.)
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