
Self-Stabilizing Deterministic TDMA for Sensor

Networks?

Mahesh Arumugam and Sandeep S. Kulkarni

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824

Email: {arumugam,sandeep}@cse.msu.edu
Web: http://www.cse.msu.edu/~{arumugam,sandeep}

Abstract. An algorithm for time division multiple access (TDMA) is
found to be applicable in converting existing distributed algorithms into
a model that is consistent with sensor networks. Such a TDMA service
needs to be self-stabilizing so that in the event of corruption of assigned
slots and clock drift, it recovers to states from where TDMA slots are con-
sistent. Previous self-stabilizing solutions for TDMA are either random-
ized or assume that the topology is known upfront and cannot change.
Thus, the question of feasibility of self-stabilizing deterministic TDMA
algorithm where topology is unknown remains open.
In this paper, we present a self-stabilizing, deterministic algorithm for
TDMA in networks where a sensor is aware of only its neighbors. This
is the first such algorithm that achieves these properties. Moreover, this
is the first algorithm that demonstrates the feasibility of stabilization-
preserving, deterministic transformation of a shared memory distributed
program on an arbitrary topology into a program that is consistent with
the sensor network model.

1 Introduction

The ability to write programs in an abstract model and then transform them
into a concrete model is crucial in distributed computing. This ability permits
one to write abstract programs where several low level issues such as commu-
nication and race conditions among different processes can be ignored. Also, it
is possible to thoroughly verify the abstract program using techniques such as
model checking and/or theorem proving. Now, if we want to utilize the verifica-
tion of the abstract program to deduce the verification of the concrete program
then the transformation must preserve those properties.

For this reason, the problem of transformation from abstract programs to
concrete programs has been studied in the literature [1–4]. These transformations
have also focused on preserving the self-stabilization [5,6] property of the original

? This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF Equipment Grant EIA-
0130724, and a grant from Michigan State University.

program. Self-stabilization refers to the ability of a system to recover from an
arbitrary state to a state from where the computation proceeds in accordance
with its specification. Since such a system recovers to legitimate states in-spite
of unexpected (transient) faults, it is highly desirable for distributed computing.

Unfortunately, the results from [1–4] cannot be applied to deriving concrete
programs for a sensor network, as the underlying model of computation in sensor
networks is write all with collision (WAC) model [7]. In this model, the com-
munication is (local) broadcast in nature and, hence, when a sensor executes
an action, it can update the state of all its neighbors at once. However, if two
neighbors of a sensor try to execute their actions simultaneously then a collision
occurs and none of the actions are successful.

To redress this deficiency, recently approaches [7, 8] have been proposed for
transforming programs written in abstract models into WAC model. The trans-
formation proposed in [7] takes any time division multiple access (TDMA) al-
gorithm in WAC model (e.g., [9–12]) as input. If the algorithm in [9], which
is self-stabilizing, deterministic and designed for grid based topologies, is used
with [7] then the transformed program in WAC model is self-stabilizing and de-
terministically correct for grid based topologies. And, if the algorithms in [10–12],
which are randomized, are used with [7] then the transformed program in WAC
model is probabilistically correct. (Note that TDMA algorithm such as those
in [13] cannot be used with [7], as the algorithm is not correct under WAC
model. Rather, in [13], the authors assume that when two writes collide the re-
sult is an OR operation between them.) Likewise, since the transformation in [8]
is randomized, it generates programs in WAC model that are probabilistically
correct. Thus, if a self-stabilizing deterministic TDMA algorithm in WAC model
were available then it would enable us to provide deterministic guarantees about
the transformed program in WAC model. To the best of our knowledge, we are
not aware of such algorithm for arbitrary networks.

With this motivation, in this paper, we propose a self-stabilizing determin-
istic TDMA algorithm. This algorithm can be used to transform existing self-
stabilizing abstract programs into deterministically self-stabilizing programs in
WAC model. This feature is useful as there is a large class of self-stabilizing
programs in the literature (e.g., [5,6,14]) and there is a significant need for self-
stabilization in sensor networks, where the environment is difficult to capture
and, hence, ability to recover from unexpected transient faults is crucial.
Organization of the paper. In Section 2, we precisely define the problem
statement and the computational models. In Section 3, we present our self-
stabilizing TDMA algorithm in shared-memory model. Subsequently, we trans-
form this algorithm into WAC model in Section 4 and add stabilization in Section
5. Finally, in Section 6, we make the concluding remarks.

2 Preliminaries

Problem statement. TDMA is the problem of assigning time slots to each
sensor. Two sensors j and k can transmit in the same time slot if j does not

interfere with the communication of k and k does not interfere with the com-
munication of j. In other words, j and k can transmit in the same slot if the
communication distance between j and k is greater than 2. Towards this end, we
model the sensor network as a graph G = (V, E), where V is the set of all sensors
and E is the communication topology. Specifically, if sensors j and k can com-
municate with each other then the edge (j, k) ∈ E. The function distanceG(j, k)
denotes the distance between j and k in G. Thus, the problem statement of
TDMA is shown in Figure 1.

Problem statement: TDMA

Given a communication graph G=(V,E); assign time slots to V such that the
following condition is satisfied:

If j, k ∈ V are allowed to transmit at the same time, then distanceG(j, k) > 2

Fig. 1. Problem statement of TDMA

Models of computation. Programs are specified in terms of guarded com-
mands; each guarded command is of the form, g −→ st, where g is a predicate
over program variables, and st updates program variables. An action g −→ st is
enabled when g evaluates to true and to execute that action, st is executed.

A computation consists of a sequence s0, s1, . . . , where sj+1 is obtained from
sj by executing actions in the program. A computation model limits the variables
that an action can read and write. We split the actions into a set of processes.
Each action is associated with one of the processes. We now describe how we
model the restrictions imposed by the shared-memory and the WAC models.
Shared-memory model. In this model, in one atomic step, a sensor can read its
state as well as the state of its neighbors (and update its private variables) and
write its own variables using its own variables.
Write all with collision (WAC) model. In this model, each sensor consists of
write actions (to be precise, write-all actions). Specifically, in one atomic action,
a sensor can update its own state and the state of all its neighbors. However, if
two or more sensors simultaneously try to update the state of a sensor, say k,
then the state of k remains unchanged. Thus, this model captures the fact that
a message sent by a sensor is broadcast. But, if multiple messages are sent to a
sensor simultaneously then, due to collision, it receives none.
Assumptions. We assume that there is a base station that is responsible
for token circulation. Such a base station can be readily found in sensor net-
work applications, where it is responsible for exfiltrating the data to the outside
world (e.g., in the extreme scaling project [15], the network is split into multiple
sections and each section has at least one base station for data-gathering and
network management). Next, we assume that each sensor knows the ID of the
sensors that it can communicate with. This assumption is reasonable since the
sensors collaborate among their neighbors when an event occurs. We assume
that the maximum degree of the graph does not exceed a certain threshold, say,
d. This can be ensured by having the deployment follow a certain geometric
distribution or using a predetermined topology. Finally, we assume that time

synchronization can be achieved during token circulation. Whenever a sensor
receives the token, it may synchronize its clock with respect to its parent. Also,
we can integrate the algorithms proposed in literature (e.g., [16]).

3 Self-Stabilizing TDMA in Shared-Memory Model

In this section, we present our algorithm in shared-memory model. In this algo-
rithm, we split the system architecture into 3 layers: (1) token circulation layer,
(2) TDMA layer, and (3) application layer. The token circulation layer circu-
lates a token in such a way that every sensor is visited at least once in every
circulation. In this paper, we do not present a new algorithm for token circu-
lation. Rather, we only identify the constraints that this layer should satisfy.
Specifically, this layer should recover from token losses and presence of multiple
tokens. In other words, we require that this layer be self-stabilizing. We note that
graph traversal algorithms such as [17–20] satisfy these constraints. Hence, any
of these algorithms can be used. The TDMA layer is responsible for assigning
time slots to all the sensors. And, finally, the application layer is where the ac-
tual sensor network application resides. All application message communication
goes through the TDMA layer. Now, we explain the TDMA layer in detail.

3.1 TDMA Layer

The TDMA layer uses a distance 2 coloring algorithm for determining the initial
slots of the sensors. Hence, we present our algorithm in two parts: (1) distance
2 coloring and (2) TDMA slot assignment.
Distance 2 coloring. Given a communication graph G=(V, E) for a sensor
network, we compute E ′ such that two distinct sensors x and y in V are connected
if the distance between them in G is at most 2. To obtain distance 2 coloring, we
require that (∀(i, j) ∈ E ′ :: color.i 6= color.j), where color.i is the color assigned
to sensor i. Thus, the problem statement is defined in Figure 2.

Problem statement: Distance 2 coloring

Given a communication graph G=(V,E); assign colors to V such that the following
condition is satisfied: (∀(i, j) ∈ E′ :: color.i 6= color.j)

where, E′ = {(x, y)|(x 6= y)∧ ((x, y) ∈ E ∨ (∃z ∈ V :: (x, z) ∈ E ∧ (z, y) ∈ E))}

Fig. 2. Problem statement of distance 2 coloring

In our algorithm, each sensor maintains two public variables: color, the color
of the sensor and nbrClr, a vector consisting of 〈id, c〉 elements, where id is
a neighbor of the sensor and c is the color assigned to corresponding sensor.
Initially, nbrClr variable contains entries for all distance 1 neighbors of the sensor,
where the colors are undefined. A sensor can choose its color from K, the set of
colors. To obtain a distance 2 coloring, d2 +1 colors are sufficient, where d is the
maximum degree in the graph (cf. Lemma 3.1). Hence, K contains d2 +1 colors.

Whenever a sensor (say, j) receives the token from the token circulation
layer, first, j reads nbrClr of all its neighbors and updates its private variable
dist2Clr.j. The variable dist2Clr.j is a vector similar to nbrClr.j and contains
the colors assigned to the sensors at distance 2 of j. Next, j computes used.j
which contains the colors used in its distance 2 neighborhood. If color.j ∈ used.j,
j chooses a color from K − used.j. Otherwise, j keeps its current color. Once j

chooses its color, it waits until all its distance 1 neighbors have copied color.j.
Towards this end, sensor l will update nbrClr.l with 〈j, color.j〉 if j is a neighbor
of l and color.j has changed. Once all the neighbors of j have updated nbrClr
with color.j, j forwards the token. Thus, the algorithm for distance 2 coloring
is shown in Figure 3. (For simplicity of presentation, in Figure 3, we represent
action A3, where j forwards the token after all its neighbors have updated their
nbrClr values with color.j, separately. Whenever j receives the token, we require
that action A3 is executed only after action A2 is executed at least once.)

sensor j

const

N.j // neighbors of j

K // set of colors
var

public color.j // color of j

public nbrClr.j // colors used by neighbors of j

private dist2Clr.j // colors used at distance 2 of j

private used.j // colors used within distance 2 of j

begin

A1: (l ∈ N.j) ∧ (〈l, c〉 ∈ nbrClr.j) ∧ (color.l 6= c) −→
nbrClr.j :=nbrClr.j − {〈l, c〉} ∪ {〈l, color.l〉}

A2: token(j) −→
dist2Clr.j :={〈id, c〉|∃k∈N.j : (〈id, c〉∈nbrClr.k) ∧ (id 6=j)}
used.j :={c|〈id, c〉∈nbrClr.j ∨ 〈id, c〉∈dist2Clr.j}
if(color.j ∈ used.j) color.j := minimum color in K−used.j

A3: token(j) ∧ (∀l ∈ N.j : (〈j, c〉 ∈ nbrClr.l ∧ color.j = c)) −→
forward token

end

Fig. 3. Algorithm for distance 2 coloring in shared-memory model

Lemma 3.1 If d is the maximum degree of a graph then d2 + 1 colors are
sufficient for distance 2 coloring. (cf. [21] for proofs of the theorems.) ut
Corollary 3.2 For any sensor j, used.j contains at most d2 colors. ut
Theorem 3.3 The above algorithm satisfies the problem specification of dis-
tance 2 coloring. ut
Theorem 3.4 Starting from arbitrary initial states, the above algorithm recov-
ers to states from where distance 2 coloring is achieved. ut
TDMA slot assignment. In our algorithm, color.j determines the initial
TDMA slot of j. And, future slots are computed using the knowledge about the
period between successive TDMA slots. Since the maximum number of colors

used in any distance 2 neighborhood is d2 + 1 (cf. Lemma 3.1), the period be-
tween successive TDMA slots, P = d2 + 1, suffices. Once the TDMA slots are
determined, the sensor forwards the token in its TDMA slot. And, the sensor
can start transmitting application messages in its TDMA slots.

We note that identifying an optimal assignment is not possible as the prob-
lem of distance 2 coloring is NP-complete even in an offline setup [22]. In [23,24],
approximation algorithms for offline distance 2 coloring in specific graphs (e.g.,
planar) are proposed. However, in this paper, we consider the problem of dis-
tributed distance 2 coloring where each sensor is only aware of its local neighbor-
hood. In this case, given a sensor with degree d, the slots assigned to this sensor
and its neighbors must be disjoint. Hence, at least d + 1 colors are required.
Thus, the number of colors used in our algorithm is within d times the optimal.
Theorem 3.5 The above algorithm ensures collision-free communication. ut

Since the distance 2 coloring algorithm is self-stabilizing (cf. Theorem 3.4),
once the initial TDMA slots are recovered starting from arbitrary initial states,
the sensors can determine the future TDMA slots.
Theorem 3.6 Starting from arbitrary initial states, the above algorithm recov-
ers to states from where collision-free communication is restored. ut

4 TDMA Algorithm in WAC Model

In this section, we transform the algorithm in Section 3 into WAC model that
achieves token circulation and distance 2 coloring upon appropriate initialization.
(The issue of self-stabilization is handled in Section 5.) In shared-memory model,
in each action, a sensor reads the state of its neighbors as well as writes its own
state. However, in WAC model, there is no equivalent of a read action. Hence, the
action by which sensor j reads the state of sensor k in shared-memory model is
simulated by requiring k to write the appropriate value at j. Since simultaneous
write actions by two or more sensors may result in a collision, we allow sensors
to execute in such a way that simultaneous executions do not result in collisions.

Observe that if collision-freedom is provided then the actions of a program in
shared-memory model can be trivially executed in WAC model. Our algorithm
in this section uses this feature and ensures that collision-freedom is guaranteed.
In this algorithm, in the initial state, (a) sensors do not communicate and (b)
nbrClr and dist2Clr variables contain entries such that the colors are undefined.
Distance 2 coloring. Whenever a sensor (say, j) receives the token, j com-
putes used.j which contains the colors used in its distance 2 neighborhood. If
nbrClr.j (or dist2Clr.j) contains 〈l, undefined〉, l did not receive the token yet
and, hence, color.l is not assigned. Therefore, j ignores such neighbors. After-
wards, j chooses a color such that color.j 6∈ used.j. Subsequently, j reports its
color to its neighbors within distance 2 using the primitive report distance 2 nbrs
(discussed later in this section) and forwards the token. Thus, the action by which
k reads its neighbors (in shared memory model) is modeled as a write action
where j reports its color using the primitive report distance 2 nbrs. Figure 4
shows the transformed algorithm in WAC model.

sensor j

const N.j, K

var color.j, nbrClr.j, dist2Clr.j, used.j

begin

token(j) −→ used.j :={c|〈id, c〉∈nbrClr.j ∨ 〈id, c〉∈dist2Clr.j}
color.j :=minimum color in K−used.j

execute report distance 2 nbrs

forward token
end

Fig. 4. Algorithm for distance 2 coloring in WAC model

Note that the order in which the token is circulated is determined by the
token circulation algorithm used in Section 3, which is correct under the shared-
memory model (e.g., [17–20]). Since token circulation is the only activity in
the initial state, it is straightforward to ensure collision-freedom. Specifically, to
achieve collision-freedom, if j forwards the token to k in the algorithm used in
Section 3, we require that the program variables corresponding to the token are
updated at j and k without collision in WAC model. This can be achieved using
the primitive report distance 2 nbrs. Hence, the effect of executing the actions
in WAC model will be one that is permitted in shared-memory model.

Theorem 4.1 The above algorithm satisfies the problem specification of dis-
tance 2 coloring. ut

TDMA slot assignment. Similar to the discussion in Section 3, the color of
the sensor determines the initial TDMA slot. Subsequent slots can be computed
using the knowledge about the TDMA period. If d is the maximum degree of
the communication graph G, the TDMA period, P =d2 + 1 suffices.

However, unlike the algorithm in Section 3 in shared-memory model, sen-
sors do not start transmitting messages immediately as the TDMA message
communication may interfere with the token circulation or the primitive re-
port distance 2 nbrs. Once the TDMA slots are determined, a sensor forwards the
token in its TDMA slot. Hence, the token circulation does not collide with other
TDMA slots. Next, a sensor waits until all the sensors in its distance 2 neigh-
borhood have determined their TDMA slots before transmitting messages in its
TDMA slots. A sensor learns this information when the sensors in its distance
2 neighborhood report their colors using the primitive report distance 2 nbrs.
Thus, when a sensor starts transmitting application messages, all sensors in its
distance 2 neighborhood have determined their TDMA slots and, hence, does
not interfere with other TDMA slots and the primitive report distance 2 nbrs.

Theorem 4.2 The above algorithm ensures collision-free communication. ut

Implementation of report distance 2 nbrs. Whenever a sensor (say, j)
decides its color, this primitive reports the color to its distance 2 neighborhood.
It updates the nbrClr value of its distance 1 neighbors and dist2Clr value of
its distance 2 neighbors. Towards this end, j sends a broadcast message with
its color and a schedule for its distance 1 neighbors. The sensors at distance 1
of j update their nbrClr values. Based on the schedule in the report message,

each of the neighbors broadcast their nbrClr vectors. Specifically, if a distance
1 neighbor (say, l) of j is already colored, the schedule requires l to broadcast
nbrClr.l in its TDMA slot. Otherwise, the schedule specifies the slot that l should
use such that it does not interfere with the slots already assigned to j’s distance
2 neighborhood. If there exists a sensor k such that distanceG(l, k) ≤ 2, then
k will not transmit in its TDMA slots, as l is not yet colored. (Recall that a
sensor transmits application messages only if all its distance 2 neighbors have
determined their TDMA slots.) Now, a sensor (say, m) updates dist2Clr.m with
〈j, color.j〉 iff (m 6= j) ∧ (j 6∈ N.m). Thus, this schedule guarantees collision-free
update of color.j at sensors within distance 2 of j. Furthermore, this primitive
requires at most d+1 update messages.

5 Adding Stabilization in WAC Model

In Section 4, if the sensors are assigned correct slots then validating the slots is
straightforward. Towards this end, we can use a simple diffusing computation to
allow sensors to report their colors to distance 2 neighborhood and ensure that
the slots are consistent. For simplicity of presentation, we assume that token
circulation is used for revalidating TDMA slots. Now, in the absence of faults,
the token circulates successfully and, hence, slots are revalidated. However, in
the presence of faults, the token may be lost due to a variety of reasons, such as,
(1) TDMA slots are not collision-free, (2) nbrClr values are corrupted, and/or
(3) token is corrupted. Or, due to transient faults, there may be several tokens.

To obtain self-stabilization, we use the convergence-stair approach proposed
in [25]. First, we ensure that if the system contains multiple tokens then it
recovers to states where there is at most one token. Then, we ensure that the
system recovers to states where there is a unique token (cf. Figure 5).
Step 1: Dealing with multiple tokens. In this step, we ensure that any
token either returns to the base station within a predetermined time or it is lost.
Towards this end, we ensure that a sensor forwards the token as soon as possible.
To achieve this, whenever a sensor, say j, receives the token, j updates its color
at its neighbors in its TDMA slot. (This can be achieved within P slots, where
P is the TDMA period.) Furthermore, in the subsequent slots, (a) the neighbors
relay this information to distance 2 neighbors of j and (b) j forwards the token.
(Both of these can be achieved within P slots.) If the TDMA slots are valid
then any token will return in 2 ∗ P ∗ |Et| slots to the base station, where |Et| is
number of edges traversed by the token. Otherwise, it may be lost.

In order to revalidate the slots, the base station initiates a token circulation
once every token circulation period, Ptc slots. This value is chosen such that it is
at least equal to the time taken for token circulation (i.e., Ptc ≥ 2∗P ∗|Et|). Thus,
when the base station (i.e., r) initiates a token circulation, it expects to receive
the token back within Ptc. Towards this end, the base station sets a timeout for
Ptc whenever it forwards the token. Now, if the base station sends a token at time
t and it does not send additional token(s) before time t + Ptc then all tokens at
time t will return to the base station before time t+Ptc or they will be lost. Hence,

•when new token circulation begins
• set a timer T1 until which the

token must return
• set TokensReceived := 0
•upon completing token circulation
• set TokensReceived := 1
• // do not recirculate until T1 expires

−upon expiration of timer T1

− // no sensor other than base station
has the token

− if TokensReceived = 1
− start a new token circulation

else
wait until distance 3 neighborhood
has stopped

send recovery token

(a) Actions at the base station

•upon receiving a token
• verify nbrClr and dist2Clr variables
• forward token as soon as

possible (see description)
− set a timer T2 for return of

the token

upon expiration of timer T2

// suspend communication until
new token arrives

set nbrClr and dist2Clr

to undefined
upon receiving recovery token

recompute nbrClr, dist2Clr, color

wait until distance 3 neighborhood
has stopped

forward recovery token

(b) Actions at the sensors

TDMA slots are correctExactly 1 token

Step 3: All actions

Step 2: Actions with and

Step 1: Actions with

Exactly 1 token

At most 1 token

Arbitrary state: 0 or more tokens

(c) Convergence to legitimate states

Fig. 5. Adding stabilization

when the timeout expires, there is no token in the network. If the base station
does not receive any token before the timeout expires, it concludes that the token
is lost. Similarly, whenever a sensor (say, j 6= r) forwards the token, it expects
to receive the token in the subsequent round within Ptc. Otherwise, it sets the
color values in nbrClr.j and dist2Clr.j to undefined. And, stops transmitting
until it recomputes color.j and the sensors in its distance 2 neighborhood report
their colors. Therefore, at most one token resides in the network at any instant.

Lemma 5.1 For any configuration, if the base station initiates a token circula-
tion at time t and does not circulate additional tokens before time t + Ptc then
no sensor other than the base station may have a token at time t + Ptc. ut

Steps 2 and 3: Recovery from lost token. Now, if the token is lost, the
base station initiates a recovery by sending a recovery token. Before it sends the
recovery token, it waits until the sensors in its distance 3 neighborhood have
stopped transmitting. This is to ensure that the primitive report distance 2 nbrs

can update the distance 2 neighbors of the base station successfully. Let Trt

be the time required for sensors in the distance 3 neighborhood of the base
station to stop transmitting. The value of Trt should be chosen such that the
sensors within distance 3 of the base station can detect the loss of the token
within this interval. Although, the actual value of Trt depends on the token
circulation algorithm, it is bounded by Ptc. After Trt amount of time, the base
station reports its color to the sensors within distance 2 of it. As mentioned in
Section 4, the primitive report distance 2 nbrs ensures collision-free update since
the sensors within distance 2 have stopped. Then, it forwards the recovery token.

When a sensor (say, j) receives the recovery token, it waits until the sensors
in the distance 3 neighborhood of j have stopped. Then, j follows the algorithm
in Section 4 to compute its color and report it to its distance 2 neighborhood.

Lemma 5.2 Whenever a sensor (say, j) forwards the recovery token, sensors
within distance 2 of j are updated with color.j without collision. ut

The pseudo-code and illustration for stabilization are shown Figure 5. Once
a sensor recomputes its color, it can determine its TDMA slots (cf. Section 4).

Theorem 5.3 With the above modification, starting from arbitrary initial
states, the TDMA algorithm in WAC model recovers to states from where
collision-free communication is restored. ut

Time complexity for recovery. Suppose Trt = Ptc, i.e., the base station
waits for one token circulation before forwarding the recovery token. Now, when
the base station forwards the recovery token, all the sensors in the network would
have stopped transmitting. Further, whenever a sensor receives the token, it can
report its color without waiting for additional time. To compute the time for
recovery, observe that it takes (a) at most one token circulation time (i.e., Ptc)
for the base station to detect token loss, (b) one token circulation for the sensors
to stop and wait for recovery, and (c) at most one token circulation for the
network to resume normal operation. Thus, the time required for the network
to self-stabilize is at most 2 ∗ Ptc+ time taken for resuming normal operation.
Since the time taken for resuming normal operation is bounded by Ptc, the time
required for recovery is bounded by 3 ∗ Ptc. We expect that depending on the
token circulation algorithm, the recovery time can be reduced. However, the
issue of optimizing the recovery time is outside the scope of this paper.

Optimizations for token circulation and recovery. Whenever the token
is lost, it is possible that the slots are still collision-free. This could happen if the
token is lost due to message corruption or synchronization errors. To deal with
this problem, the base station can choose to initiate recovery only if it misses
the token for a threshold number of consecutive attempts.

Additionally, to ensure that the token is not lost due to message corruption,
whenever a sensor (say, j) forwards the token, it expects its successor (say,
k ∈ N.j) to forward the token within a certain interval. If j fails to receive such
implicit acknowledgment from k, j retransmits the token (in its TDMA slots) a
threshold number of times. If a sensor receives duplicate tokens, it ignores such
messages. Thus, the reliability of token circulation can be improved.

Optimizations for controlled topology changes. Whenever a sensor is
removed or fails, the slots assigned to other sensors are still collision-free and,
hence, normal operation of the network is not interrupted. However, the slots
assigned to the removed/failed sensors are wasted. We refer the reader to [21]
on how the sensors can reclaim these slots.

Suppose a sensor (say, q) is added such that the maximum degree assumption
is not violated. Towards this end, we require that whenever a sensor forwards
the token, it includes its color and the colors assigned to its distance 1 neighbors.
Before q starts transmitting application messages, we require q to learn the colors
assigned to its distance 2 neighborhood. One way to achieve this is by listening
to token circulation of its distance 1 neighbors. Once q learns the colors assigned
to sensors within distance 2, it can choose its color. Thus, q can determine the
TDMA slots. Now, when q sends a message, its neighbors learn q’s presence and
include it in subsequent token circulations. If two or more sensors are added
simultaneously then these new sensors may choose conflicting colors and, hence,
collisions may occur. Since our algorithm is self-stabilizing, the network self-
stabilizes to states where the colors assigned to all sensors are collision-free.
Thus, new sensors can be added to the network. However, if adding new sensors
violates the assumption about the maximum degree of the communication graph,
slots may not be assigned to the sensors and/or collisions may occur.

6 Conclusion

In this paper, we presented a self-stabilizing deterministic TDMA algorithm
for sensor networks. Such algorithm suffice in transforming existing programs in
shared memory model into WAC model. This is useful since many of the problems
in sensor networks (e.g., routing, data diffusion, synchronization, leader election)
have been extensively studied in distributed computing. Thus, this algorithm
helps in quickly prototyping a sensor network application.

To our knowledge, this is the first algorithm that demonstrates the feasibility
of deterministic transformation of shared memory distributed programs into a
program in WAC model while preserving the property of self-stabilization on
an arbitrary topology (where maximum degree of a node is known). By con-
trast, previous algorithms [9–12] are limited to certain topologies (e.g., grid) or
generate programs that are probabilistically correct.

There are several possible future directions for this work. One future direction
is to develop a TDMA algorithm that (in addition to being deterministic and
self-stabilizing) provides concurrency during recovery. Another future direction
is to quantify the efficiency of the transformed program in WAC model using
the TDMA algorithm proposed in this paper.

References

1. M. Gouda and F. Haddix. The alternator. Workshop on Self-Stabilizing Systems,
1999.

2. G. Antonoiu and P. K. Srimani. Mutual exclusion between neighboring nodes in an
arbitrary system graph tree that stabilizies using read/write atomicity. Euro-par’99
Parallel Processing, 1999.

3. M. Nesterenko and A. Arora. Self-stabilization preserving atomicity refinements.
Journal of Parallel and Distributed Computing, 62(5):766–791, 2002.

4. K. Ioannidou. Transformations of self-stabilizing algorithms. Conference on Dis-
tributed Computing, 2002.

5. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 1974.

6. S. Dolev. Self-Stabilization. The MIT Press, 2000.
7. S. S. Kulkarni and M. Arumugam. Transformations for write-all-with-collision

model. Computer Communications (Elsevier), 2005, to appear.
8. T. Herman. Models of self-stabilization and sensor networks. In Proceedings of the

International Workshop on Distributed Computing (IWDC), 2003.
9. S. S. Kulkarni and M. Arumugam. SS-TDMA: A self-stabilizing MAC for sensor

networks. In Sensor Network Operations. IEEE Press, 2005, to appear.
10. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for

wireless sensor networks. Algorithmic Aspects of Wireless Sensor Networks, 2004.
11. C. Busch, M. M-Ismail, F. Sivrikaya, and B. Yener. Contention-free MAC protocols

for wireless sensor networks. 18th Conference on Distributed Computing, 2004.
12. V. Claesson, H. Lönn, and N. Suri. Efficient TDMA synchronization for distributed

embedded systems. IEEE Symposium on Reliable Distributed Systems, 2001.
13. M. Ringwald and K. Römer. BitMAC: A deterministic, collision-free, and robust

MAC protcol for sensor networks. European Workshop on Sensor Networks, 2005.
14. T. Herman. A comprehensive bibliography on self-stabilization - a working paper.

http://www.cs.uiowa.edu/ftp/selfstab/bibiography.
15. A. Arora et al. ExScal: Elements of an extreme scale wireless sensor network.

International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2005.

16. T. Herman. NestArch: Prototype time synchronization service. http://www.ai.

mit.edu/people/sombrero/nestwiki/index/ComponentTimeSync, 2003.
17. C. Johnen, G. Alari, J. Beauquier, and A. K. Datta. Self-stabilizing depth-first

token passing on rooted networks. Workshop on Distributed Algorithms, 1997.
18. F. Petit and V. Villain. Color optimal self-stabilizing depth-first token circulation.

Symposium on Parallel Architectures, Algorithms, and Networks, 1997.
19. A. K. Datta, C. Johnen, F. Petit, and V. Villain. Self-stabilizing depth-first token

circulation in arbitrary rooted networks. Distributed Computing, 13:207–218, 2000.
20. F. Petit. Fast self-stabilizing depth-first token circulation. In Proceedings of the

Workshop on Self-Stabilizing Systems, Springer, LNCS:2194:200–215, 2001.
21. M. Arumugam and S. S. Kulkarni. Self-stabilizing deterministic TDMA for sensor

networks. Technical Report MSU-CSE-05-19, Michigan State University, 2005.
22. E. L. Lloyd and S. Ramanathan. On the complexity of distance-2 coloring. Inter-

national Conference on Computing and Information, 1992.
23. S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multihop radio net-

works. IEEE/ACM Transactions on Networking, 1(2):166–177, April 1993.
24. S. O. Krumke, M. V. Marathe, and S. S. Ravi. Models and approximation algo-

rithms for channel assignment in radio networks. Wireless networks, 2001.
25. M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE

Transactions on Computers, 40(4):448–458, 1991.

