
CodeT5++: A Pre-trained Programming Language Model for Code
Summarization Task∗

Mahesh Arumugam
Section 1 / W266

aumahesh@berkeley.edu

Anshuman Awasthi
Section 5 / W266

awasthianshuman@berkeley.edu

Abstract

There has been considerable research in build-
ing pre-trained models for programming lan-
guage tasks, such as CodeBERT and CodeT5,
that enable several downstream tasks, includ-
ing code summarization, generation, and trans-
lation. In this paper, we focus on the task
of automated code summarization that trans-
lates Python source code into a natural lan-
guage docstring. Towards this end, we propose
CodeT5++, extensions to CodeT5 where we
introduce novel pre-training tasks that capture
relevant source code features most useful in
code summarization tasks. Specifically, we pre-
train the model to (1) predict masked return
values of Python functions, (2) detect whether
a docstring and source code pair is an accurate
representation of the function, and (3) predict
masked function names of Python functions.
Subsequently, we fine-tune the models for the
code summarization task and evaluate the per-
formance using a smoothed BLEU-4 score, a
precision-based metric applicable in translation
tasks. Finally, we analyze how the pre-training
steps help improve the summarization tasks.

1 Introduction

Docstrings in programming language source code
provide a way to document a function, a class, or a
module. It enhances the readability of the source
code and provides a context before the actual im-
plementation for better understanding. However,
more often than not, programmers write such doc-
strings as an afterthought -if at all and ignore their
correctness. Though there are general guidelines to
writing good docstrings, most docstrings do not ad-
here to these guidelines strictly. As a result, source
code often tends to be undocumented or poorly
documented. Rather than the authors providing

∗ Original proposal title: AutoDoc: Human Readable
Docstrings from Source Code.

clear documentation of the source code, it is of-
ten left to other programmers or maintainers of the
source code to figure out the code’s assumptions,
intentions, and functionality.

To eliminate programmer fatigue and improve
documentation, automatically generating doc-
strings from source code is essential. Towards this
end, first, we observe that source code provides
sufficient context through logical constructs (such
as conditions and iterations), meaningful identifier
names, input arguments, and return values. As a
result, machine learning algorithms can leverage
such information and enable automatic program-
ming language (PL) to natural language (NL) trans-
lation.

Contextual embeddings of tokens (or words) ex-
ist for natural language texts that facilitate down-
stream tasks such as summarization, translation,
and question-answering. Such contextual em-
beddings of tokens (e.g., Devlin et al. (2019)
and Brown et al. (2020)) are pre-trained using a
large corpus of unlabeled data (e.g., Wikipedia).
The success of such contextual embeddings and
transformer-based neural network architectures
(Vaswani et al., 2017) for sequence-to-sequence
learning motivated the extension of such archi-
tectures for programming languages. One such
model is CodeT5 (Wang et al., 2021), which is
based on T5’s (Raffel et al., 2020) encoder-decoder
transformer architecture. CodeT5 enables various
programming language tasks, including code sum-
marization, translation, completion, and unit-test
generation.

In this paper, we propose CodeT5++, extensions
to CodeT5’s pre-training tasks that learns to gen-
erate better natural language docstrings (summa-
rizations). Our work builds on top of CodeT5 by
adding new pre-training objectives: (1) masked
return values prediction, (2) corrupted docstring de-
tection, and (3) masked function names prediction.

In Masked Return Values (MRV) prediction, the
pre-training task masks return values (constants, lit-
erals, identifiers, or expressions) and predict these
values. In Corrupted Docstring (CDS) detection,
the pre-training task randomly corrupts docstrings
and then predicts which docstring and source code
pairs accurately represent the function. Finally, in
Masked Function Names (MFN) prediction, the
pre-training task masks the names of the functions
and predicts them. These pre-training tasks aim to
capture the salient aspects of the source code that
are most meaningful in a code summarization task.

In summary, the contributions of this paper are:

• We fine-tune CodeT5 on the Code Docstring
Corpus (Barone and Sennrich, 2017) dataset
and compute a smoothed BLEU-4 (Lin and
Och, 2004) score, which is the evaluation met-
ric adopted by CodeT5 and other pre-trained
programming language models for translation
tasks. A precision-based metric such as BLEU
(Papineni et al., 2002) is suitable for transla-
tion/summarization tasks, where we would
like our models to generate adequate and flu-
ent summaries.

• We propose CodeT5++, a pre-trained pro-
gramming language transformer-based model
built on top of CodeT5. CodeT5++ pre-trains
on new objectives: MRV, CDS, and MFN. We
pre-train for these tasks on Code Search Net’s
(Husain et al., 2019) summarization dataset
for Python functions.

• We fine-tune and evaluate CodeT5++ on the
Code Docstring Corpus dataset.

2 Background

Pre-trained programming language models. Re-
search on contextual embeddings for natural lan-
guages has achieved great success (e.g., BERT (De-
vlin et al., 2019) and GPT (Brown et al., 2020)).
Recent work attempts to extend the architectures
of pre-trained language models to programming
languages. For example, CuBERT (Kannade et al.,
2020), CodeBERT (Feng et al., 2020), and Graph-
CodeBERT (Guo et al., 2021) build on the BERT’s
(Devlin et al., 2019) pre-trained transformer-based
architecture. CuBERT employs the same pre-
training objectives as BERT. In CuBERT, a sen-
tence is the shortest sequence of consecutive lines
that constitutes a valid statement. The pre-training

dataset consists of a massive corpus of Python pro-
grams collected from GitHub1. Similar to CuBERT,
CodeBERT uses a transformer-based architecture
that is pre-trained using masked language modeling
and replaced token detection. The pre-training data
is the Code Search Net (Husain et al., 2019) dataset.
Extending CodeBERT, GraphCodeBERT uses data
flow information and learns the code structure that
enables downstream tasks such as search, clone
detection, translation, and refinement.

In addition, recent work also extends GPT for
programming language tasks, especially for code
completion (e.g., Svyatkovskiy et al. (2020)).

Encoder-decoder architectures. BART (Lewis
et al., 2020) generalizes BERT, GPT, and other pre-
training approaches by combining a bidirectional
encoder and an auto-regressive decoder. BART is
pre-trained to retrieve the original document from
a corrupted input. BART is effective for text gener-
ation and comprehension. Hence, models such as
PLBART (Ahmad et al., 2021) work on extending
BART (Lewis et al., 2020) for downstream tasks
such as code summarization and programming lan-
guage conversion.

T5 (Raffel et al., 2020) introduces the idea of
a unified framework that converts all text-based
natural language problems into a text-to-text for-
mat using a text-to-text transformer model. In-
spired by T5, approaches such as PyMT5 (Clement
et al., 2020), Mastropaolo et al. (2021), CodeTrans
(Elnaggar et al., 2021), and CodeT5 (Wang et al.,
2021) extend T5 for programming language tasks.
Unlike CodeT5, the other approaches do not utilize
features unique to the source code (e.g., identifiers).

CodeT5 is identifier aware and trained to recover
the correct identifiers during pre-training. The pre-
training objectives of CodeT5 include: (1) masked
span detection, where random spans of arbitrary
lengths are masked and predicted during training,
(2) masked identifier prediction, where all iden-
tifiers are masked and predicted during training
and (3) bimodal dual generation that translates doc-
strings to code snippets and vice versa. It is pre-
trained on Code Search Net (Husain et al., 2019)
dataset along with two additional datasets of C/C-
Sharp from BigQuery1 for code summarization,
generation, refinement, translation, and defect de-
tection tasks.

1https://console.cloud.google.com/
marketplace/details/github/github-repos

https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos

3 Datasets

The two datasets we primarily use in pre-training
and fine-tuning are the Code Search Net (Hu-
sain et al., 2019) and the Code Docstring Corpus
(Barone and Sennrich, 2017).
Pre-training. We use the summarization set of
Python functions from the Code Search Net to pre-
train CodeT5++. This dataset includes bimodal and
unimodal data, with approximately 250K examples
for pre-training and 14K for validation. Note that
we sample 5000 examples from the validation set
for validation.
Fine-tuning. To fine-tune CodeT5++ for the
summarization task, we employ the training set of
the Code Docstring Corpus dataset2. The dataset
consists of 109108 triples of Python function decla-
rations, docstrings, and function bodies. Also, the
validation set includes 2000 examples.

4 Methods

The design and implementation of CodeT5++ are
relatively straightforward. CodeT5 is already pre-
trained on the Code Search Net (Husain et al., 2019)
dataset. In CodeT5++, we introduce novel pre-
training tasks as illustrated in Figure 1.

Figure 1: Pre-training tasks of CodeT5++.

4.1 Masked Return Values (MRV)

In trying to understand what a Python function is
doing, it is essential to know what that function is
returning as it helps identify the outcome of the
function. As a result, it helps in generating a better
docstring. To achieve this objective, we pre-train
CodeT5++ on the masked return value prediction
task. In this phase, we mask the return values (con-
stants, literals, identifiers, expressions) and let the

2https://github.com/EdinburghNLP/
code-docstring-corpus/tree/master/
parallel-corpus

training algorithm learn and predict what these re-
turn values should be for a given Python function.

4.2 Corrupted Docstring (CDS)

To better understand a valid docstring, we imple-
ment another pre-training phase, where we pre-
train CodeT5 on a dataset containing randomly
corrupted docstrings for half of the dataset. During
training, the model learns and predicts if a Python
function and the corresponding docstring match
or not. This task enables the model to generate
reasonable natural language texts.

4.3 Masked Function Names (MFN)

First, we observe that function names provide valu-
able input in understanding and summarizing a
Python function. Therefore, in this pre-training ob-
jective, we try to leverage that information. Specif-
ically, we mask the function’s name and train the
model to predict it. We note that this training ob-
jective is complementary to the masked identifier
prediction (MIP) objective in CodeT5 (Wang et al.,
2021), where all identifiers are masked (not just
the function’s name). In MFN, we keep the func-
tion body intact and let the model determine the
correct function name given its entire context. The
model learns to identify the essential attribute of
a function that is most helpful in summarization
tasks. On the other hand, in MIP, the model tries
to learn all at once. While MIP is more applicable
in downstream tasks, such as code translation and
code completion, we believe MFN is more suitable
for code summarization tasks and natural language
to programming language translation.

4.4 Fine-Tuning and Evaluation

We fine-tune the model for code summarization
using the training set of the Code Docstring Cor-
pus (Barone and Sennrich, 2017). We evaluate
the performance of our design using the smoothed
BLEU-4 score (Lin and Och, 2004) on the Code
Docstring Corpus test set. BLEU (Papineni et al.,
2002) is based on a modified n-gram precision
(pn). This metric captures adequacy and fluency
aspects of machine translation. In addition, simi-
lar to CodeT5, we employ a smoothing technique
(proposed in Lin and Och (2004)) that adds one
to n-gram hits and total n-gram count for n > 1.
As a result, candidate docstrings with less than n
words still get a positive smoothed BLEU score, as
long as there is a match in lower n-grams.

https://github.com/EdinburghNLP/code-docstring-corpus/tree/master/parallel-corpus
https://github.com/EdinburghNLP/code-docstring-corpus/tree/master/parallel-corpus
https://github.com/EdinburghNLP/code-docstring-corpus/tree/master/parallel-corpus

5 Results

Table 1 summarizes our results on the Code Doc-
string Corpus dataset.

Methods Smoothed BLEU-4
Validation Test

Baseline
CodeT5 N/A 9.19
Fine-tuned CodeBERT 9.84 7.35
Fine-tuned CodeT5 16.24 7.44

CodeT5++
+MRV 16.49 17.34
+CDS 15.42 16.45
+MRV,CDS 15.88 16.69
+MFN 15.96 16.64

Table 1: Smoothed BLUE-4 scores (Lin and Och, 2004)
for models on Code Docstring Corpus (Barone and Sennrich,
2017). Note that CodeT5 baseline model is not fine-tuned
and, hence, the smoothed BLEU-4 on validation set is not
applicable.

5.1 Baseline Results
We perform three baseline evaluations. First, we
evaluate CodeT5 for the summarization task. We
consider this result our absolute baseline as the
model is not fine-tuned. We get a smoothed BLEU-
4 score of 9.19.

In addition, we evaluate two baseline models af-
ter fine-tuning them on the Code Docstring Corpus
training set. The first baseline model with fine-
tuning is CodeBERT, and the smoothed BLEU-4
score for CodeBERT is 7.35. The second baseline
model with fine-tuning is CodeT5, and it performs
marginally better with a smoothed BLEU-4 score
of 7.44. However, this result is surprisingly low
compared to our absolute baseline model. Since
CodeT5 is a pre-trained model, we believe fine-
tuning is overfitting the model to the Code Doc-
string Corpus training dataset. From Table 1, we
observe that the fine-tuning CodeT5 performed bet-
ter on the validation set than the test set.

5.2 CodeT5++ Results
CodeT5+MRV. First, we consider CodeT5+MRV,
where we extend CodeT5 by adding a pre-training
objective of masking the return value in the Python
function and training the model to predict it. Once
the pre-training is complete, we fine-tune the model
using the train set of the Code Docstring Corpus
dataset. This model achieved a smoothed BLEU-4
score of 17.34 on the test set. As we anticipated,
this pre-training task helped the model understand
what the Python function does, and the docstring
generation task improved performance.

CodeT5+CDS. Next, we consider CodeT5+CDS,
where we add the Corrupted Docstring pre-training
objective to CodeT5. After fine-tuning on Code
Docstring Corpus dataset, this model achieved a
smoothed BLEU-4 score of 16.45 on the test set.
This result is considerably better than the BLEU
score of our baseline models. As we had suspected,
corrupting approximately 50% of the docstrings
and training the model to understand what is a valid
docstring for a Python function and what is not im-
proves the model’s ability to generate a docstring
for a Python function. However, CodeT5+CDS
did not perform better than CodeT5+MRV. We in-
terpret this to mean that a model that understands
the objective of Python functions generates better
docstrings than a model that can understand what
makes a valid docstring.

CodeT5+MRV,CDS. Since pre-training
CodeT5 on MRV and CDS individually yielded
much better performance results, we con-
sider CodeT5+MRV,CDS, where we pre-train
the CodeT5 model on both these objectives.
CodeT5+MRV,CDS achieved a smoothed BLEU-4
score of 16.69 on the test set. Although this model
performs better than CodeT5+CDS, it does not
perform as well as CodeT5+MRV. This result vali-
dates our conjecture that the task of understanding
the objective of Python functions has a higher
weightage than the task of understanding what a
valid docstring looks like for code summarization
tasks.

CodeT5+MFN. As discussed in Section 4.3, we
expect CodeT5+MFN to utilize the function body
to generate good summaries without relying on
the function’s name. Like other models, we fine-
tune CodeT5+MFN on the Code Docstring Corpus
dataset. The model achieved a smoothed BLUE-
4 score of 16.64 on the test set. While this is an
improvement over the CodeT5+CDS model, con-
trary to our expectation, this did not perform better
than CodeT5+MRV. MFN objective is unique in
that it tries to capture the signal from the function
body, whereas the MRV objective captures the sig-
nal from the function’s return values. Therefore,
we expect MFN to perform better in other test sets
and, more importantly, when combined with other
pre-training objectives (including MRV).

Combining pre-training objectives. Due to lack
of time, we did not perform modeling with combi-
nations of pre-training objectives (except for MRV
and CDS). We shall take this up as future work.

6 Discussion

Consider a function that determines whether a num-
ber is prime, as shown in Figure 2. We test two
functions with same function body: isPrime and
unique. The second function is named deliberately
to ensure that the function name does not provide
enough information to construct a good docstring.

1 def {isPrime | unique}(n):
2 if n <= 1:
3 return False
4 if n == 2:
5 return True
6 for i in range(2, math.ceil(math.sqrt(n))+1):
7 if n % i == 0:
8 return False
9 return True

Figure 2: Determine if the number is prime or not. Two
different function names: isPrime and unique.

All models generate a satisfactory docstring
for isPrime. On the other hand, all models ex-
cept CodeT5+MFN generate “Return True if n is
unique.” CodeT5+MFN generates a more accurate
summary: “Return True if n is a valid prime.” for
unique. We attribute this to the pre-training objec-
tive used in CodeT5+MFN. MFN lets the model
learn the name of the function from the structure of
the function body. While CodeT5 is pre-trained us-
ing a masked identifier prediction (MIP), it still did
not generate a good docstring for unique. During
training, MIP masks all identifiers, including the
function’s name. As a result, the model does not
have enough context to distill a function’s name
or description. Thus, in this example, the MFN
objective is helpful.

On the other hand, CodeT5+MRV also fails to
generate a valid docstring (though it has a better
BLEU score). In this particular case, due to the
overlap of common n-grams between the docstring
generated by CodeT5+MRV and a reference doc-
string for unique, it would not be penalized much.
Such scenarios possibly help CodeT5+MRV have
a slightly better BLEU-4 score.

As another illustration, consider the swap func-
tion shown in Figure 3 with four variations in func-
tion names: swap, xyz, blah and reorder.

1 def {swap | xyz | blah | reorder}(a, b):
2 a, b = b, a
3 return a, b

Figure 3: Swap function. Function names are swap, xyz,
blah, or reorder.

Table 2 shows the docstrings generated by our
models. All models generate a reasonable docstring
for swap. However, none of the models generate
a good docstring for the other variations. For ex-
ample, CodeT5+MRV generates “Same as a, b,
except that first element is returned.” for blah.
And, CodeT5+MRV,CDS generates “Reorder the
elements of a and b in ascending order” for reorder.
We believe that when there is insufficient context
(or the source length is very small), the models re-
sort to using features that could indicate what the
function may be doing. The actual function body
is tiny in the example presented in Figure 3 and,
hence, the models may rely on the function’s name
to generate docstrings. Since most programmers
would not name their functions arbitrarily, the mod-
els will usually generate reasonable docstrings.

7 Conclusion

We have presented CodeT5++ by introducing novel
pre-training tasks that capture relevant source code
features most valuable in the docstring generation.
Specifically, we proposed masked return values
(MRV) prediction, corrupted docstring (CDS) de-
tection, and masked function names (MFN) pre-
diction. Furthermore, we fine-tuned and evalu-
ated our models on the Code Docstring Corpus
dataset. Finally, we used smoothed BLEU-4 scores,
a precision-based metric applicable in translation
tasks, to compare our new models to the baselines.
Our novel training tasks helped improve the BLEU-
4 score. We also observed that a model pre-trained
solely on MRV performs better than a model pre-
trained solely on CDS (or MFN) or a combination
of MRV and CDS. Based on this result, we believe
that understanding the objective of Python func-
tions is more important than understanding what a
valid docstring looks like for code summarization
tasks.

While adding new pre-training tasks and fine-
tuning CodeT5++ for multiple programming lan-
guages is a natural extension to this work, we also
expect additional follow-up work. For example,
we would like to explore how CodeT5++ can help
in other downstream tasks, such as source code
translation across different languages and natural
language to programming language code genera-
tion. We also want to investigate unit-test coverage
and automatic unit-test case generation for source
code, as this helps unburden programmers, from
code documentation to unit testing.

Model swap xyz blah reorder
Baseline

CodeT5 Swap two values. Returns the two points
a and b.

Return the two ele-
ments a and b.

Reorder two lists.

Fine-tuned CodeBERT Swap two arrays. .. todo:: WRITEME .. todo:: WRITEME
Fine-tuned CodeT5 Swaps two numbers. Return the xyz compo-

nents of a and b.
Same as a, b, but re-
turns the result.

Same as a, b, but re-
turns the result.

CodeT5++
+MRV Swaps two lists of

numbers.
Returns the two ele-
ments of a, b, in the
same order as a, b.

Same as a, b, except
that the first element
is returned.

Reorder the elements
of two lists.

+CDS Swaps two lists. Returns the xyz of a
and b.

Same as a, but with a
different value.

Reorder two lists of
numbers.

+MRV,CDS Swaps two lists of
numbers.

Return the two ele-
ments of a and b.

Same as a, b, except
that the result is a, b.

Reorder the elements
of a and b in ascend-
ing order.

+MFN Swaps two lists of
numbers.

Returns the two ele-
ments of the xyz tuple.

Same as a, b, but re-
turns the result.

Reorder the two lists
of values.

Table 2: Docstrings generated for swap function. Note that CodeBERT did not generate any docstring for blah.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-

Wei Chang. 2021. Unified pre-training for program un-
derstanding and generation. In Proceedings of the 2021
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language
Technologies, pages 2655–2668, Online. Association for
Computational Linguistics.

Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A
Parallel Corpus of Python Functions and Documentation
Strings for Automated Code Documentation and Code Gen-
eration. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2:
Short Papers).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language models
are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc.

Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svy-
atkovskiy, and Neel Sundaresan. 2020. PyMT5: multi-
mode translation of natural language and python code
with transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 9052–9065, Online. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Association
for Computational Linguistics.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas
Feher, Christoph Angerer, Silvia Severini, Florian Matthes,

and Burkhard Rost. 2021. Codetrans: Towards cracking
the language of silicone’s code through self-supervised
deep learning and high performance computing. CoRR,
abs/2104.02443.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng
Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin
Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. Findings
of the Association for Computational Linguistics: EMNLP
2020, pages 1536–1547.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang,
Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,
Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B.
Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin
Jiang, and Ming Zhou. 2021. GraphCodeBERT: Pre-
training Code Representations with Data Flow. In Pro-
ceedings of 9th International Conference on Learning Rep-
resentations.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Al-
lamanis, and Marc Brockschmidt. 2019. Codesearchnet
challenge: Evaluating the state of semantic code search.
CoRR, abs/1909.09436.

Aditya Kannade, Petros Maniatis, Gogul Balakrishnan, and
Kensen Shi. 2020. Learning and Evaluating Contextual
Embeddings of Source Code. In Proceedings of the 37th
International Conference on Machine Learning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. 2020. BART: Denoising
sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880, Online. As-
sociation for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a
method for evaluating automatic evaluation metrics for
machine translation. In COLING 2004: Proceedings of the
20th International Conference on Computational Linguis-
tics, pages 501–507, Geneva, Switzerland. COLING.

Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper,
David Nader Palacio, Denys Poshyvanyk, Rocco Oliveto,

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/2020.emnlp-main.728
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2104.02443
http://arxiv.org/abs/2104.02443
http://arxiv.org/abs/2104.02443
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2001.00059
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072

and Gabriele Bavota. 2021. Studying the usage of text-to-
text transfer transformer to support code-related tasks. In
2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), pages 336–347.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA. Associ-
ation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. 2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel
Sundaresan. 2020. IntelliCode Compose: Code Genera-
tion Using Transformer, page 1433–1443. Association for
Computing Machinery, New York, NY, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances
in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and gen-
eration. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pages
8696–8708, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

A Appendix: Datasets
Table 3 shows the datasets we used for pre-training and fine-
tuning tasks.

Dataset Train Validation Test
Code Search Net 251820 5000 (13914) 14918
Code Docstring Corpus 109108 2000 2000

Table 3: Code Search Net (Husain et al., 2019) and Code Doc-
string Corpus (Barone and Sennrich, 2017) used to pre-train
and fine-tune our models. Note that we only use the summa-
rize/Python dataset from Code Search Net for pre-training our
models. And, we only use the parallel-corpus dataset3from
Code Docstring Corpus for fine-tuning and evaluating our
models.

Preprocessing of Code Search Net dataset. For CodeT5++
pre-training tasks, we construct datasets for various pre-
training objectives. Masked return values dataset masks all
return values (constants, literals, identifiers, expressions). The
corrupted docstring dataset corrupts the docstrings of half of
the training set. Finally, the masked function names dataset
masks the name of the functions.
Preprocessing of the Code Docstring Corpus dataset.
Since we are interested in generating docstrings for Python
functions, we must input a concatenation of the function dec-
larations and function bodies while fine-tuning the model.
Furthermore, the data uses many unique tokens and escape

3https://github.com/EdinburghNLP/
code-docstring-corpus/tree/master/
parallel-corpus

characters to denote certain aspects of the data (such as new-
lines and whitespaces). We must process this data as required
before inputting it to fine-tune the model.

B Appendix: Training
CodeT5++ uses the same architecture as CodeT5, with 12
layers, 768-dimensional hidden states, and 12 attention heads
in the decoder. We train CodeT5++ in Google Cloud Plat-
form on a virtual machine with 2 NVIDIA Tesla T4 GPU
instances. Table 4 shows the hyper-parameters used for pre-
training and fine-tuning. Each epoch in pre-training takes
around 200 minutes for training and around 17 minutes for
validation. Likewise, each epoch in fine-tuning takes around
110 minutes for training and around a minute for validation.
The calculation of the smoothed BLEU-4 score on the test set
takes around 20 minutes.

Parameter Pre-training Fine-tuning
Epochs 3 3
Learning rate 0.00005 0.00005
Train batch size 16 16
Validation batch size N/A 8
Max Length 512 N/A
Max source length N/A 256
Max target length N/A 128

Table 4: Hyper-parameters used in pre-training and fine-
tuning.

C Appendix: isPrime and unique
Table 5 shows the docstrings generated by our models for
isPrime and unique functions shown in Figure 2.

Model isPrime unique
Baseline
CodeT5 Check if n is prime. Return True if n is unique.
Fine-tuned Code-
BERT

Returns True if n is prime. Return True if n is unique.

Fine-tuned CodeT5 Returns True if n is prime. Return True if n is unique.
CodeT5++
+MRV Returns True if n is prime. Return True if n is unique.
+CDS Returns True if n is prime. Return True if n is unique.
+MRV,CDS Returns True if n is prime. Return True if n is unique.
+MFN Returns True if n is prime. Return True if n is a

valid prime.

Table 5: Docstrings generated for isPrime function.

D Appendix: Supplemental Material
For pre-training, we extended the pre-training scripts for T5
using PyTorch Lightning4. In addition, we extended CodeT55

by forking and adding new pre-training objectives. Also, we
wrote scripts to generate MRV, CDS, and MFN datasets from
the Code Search Net dataset. Finally, the code and scripts to
pre-train and fine-tune CodeT5++ are available in our Github
repository6. In addition, all our pre-trained and fine-tuned
models are available in Google Cloud Storage7.

4https://github.com/manueldeprada/
Pretraining-T5-PyTorch-Lightning

5https://github.com/salesforce/CodeT5
6https://github.com/aumahesh-mids/

w266-summer-2022-project
7GCP Cloud Storage bucket: gs://mrv-cds/

models

https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://github.com/EdinburghNLP/code-docstring-corpus/tree/master/parallel-corpus
https://github.com/EdinburghNLP/code-docstring-corpus/tree/master/parallel-corpus
https://github.com/EdinburghNLP/code-docstring-corpus/tree/master/parallel-corpus
https://github.com/manueldeprada/Pretraining-T5-PyTorch-Lightning
https://github.com/manueldeprada/Pretraining-T5-PyTorch-Lightning
https://github.com/salesforce/CodeT5
https://github.com/aumahesh-mids/w266-summer-2022-project
https://github.com/aumahesh-mids/w266-summer-2022-project
gs://mrv-cds/models
gs://mrv-cds/models

